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Abstract—The problem of laminar buoyancy-driven flow in a square cavity driven by a warm vertical wall,
having a uniform surface temperature whose magnitude is changing periodically with time, is investigated
numerically. The warm wall surface temperature varies sinusoidally, oscillating about a fixed mean tem-
perature. The opposite cold wall is maintained at a constant temperature. Solutions are obtained for a
number of different cases which illustrate the effects of the oscillating surface temperature on the fluid flow
and the heat transfer through the enclosure. The transient solutions obtained are all periodic in time. The
streamlines show that a weak secondary flow cell intermittently appears and then disappears in the upper
corner of the enclosure near the hot driving wall, rotating in a direction opposite to the main flow. The
instantaneous heat flux through the hot wall fluctuates greatly in time and over certain times heat removal
occurs over a large segment of the hot driving surface. The effect of the periodically changing wall
temperature is felt only partially into the enclosure and, overall, the time-averaged heat transfer across the
enclosure is rather insensitive to the time-dependent boundary condition.

INTRODUCTION

NUMEROUS studies exist in the literature that investi-
gate natural convection in enclosures. Interest is justi-
fied by its many applications which include heating
and cooling of buildings, solar energy utilization, ther-
mal energy storage, convection in lakes and small
bodies of water, and more recently, cooling of elec-
tronic equipment. An overview of this important area
in heat transfer is given in ref. [1].

The majority of the published work in free con-
vection in enclosures that exists today considers the
steady-state phenomenon. The driving walls of the
enclosure are customarily held at a constant tem-
perature or heat flux. However, in many of the appli-
cations listed above, the thermal boundary conditions
vary with time and, therefore, in reality, a transient
or unsteady convective flow ensues. More specifically,
in the cooling of electronic equipment, the electrical
components are frequently energized intermittently
and, therefore, generate heat in an unsteady manner.
This heat is then removed by natural convection.
Time-dependent boundary conditions are also clearly
present in building heat transfer where the ‘un-
steadiness’ is induced by the changing ambient con-
ditions and by intermittent usage of the heating
system. In spite of these facts, litile work has been
performed in the field of transient natural convection
in enclosures.

The limited number of transient studies almost

unanimously considered a step change (with respect
to time) in the wall boundary conditions [2-8]. In
these studies, the researchers examined the changing
temperature and flow fields as they evolved over time
as the system approached the new steady-state
solution. The case of a vertical fluid layer initially
motionless and at a uniform temperature when sub-
jected to a sudden change in the two end wall tem-
peratures to T+ AT, respectively, at time ¢ = 0 was
investigated in refs. [2-6]. The transient behavior of
an enclosure when the temperature of only a single
wall was suddenly changed, while the other walls were
adiabatic, was studied by Nicolette ef al. [7] and Hall
et al. [8].

Transient natural convection studies involving
more physically realistic boundary conditions where
the wall temperature gradually changes over time have
received less attention. To the best of the authors’
knowledge, the only available studies of this type,
pertaining to rectangular geometry, are the works of
Schladow et al. [S] and Vasseur and Robillard [9].
The former study mainly investigated transient natu-
ral convective flow induced by a sudden change in wall
temperature. In an attempt to explain discrepancies
found between their numerical simulation and exper-
imental observations of the flow field, Schladow et a/.
performed an additional run in which they ramped
the driving wall temperature in a linear fashion over
a five second interval equal in magnitude to the step
change. Comparison between the two simulations
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specific heat at constant pressure

f {requency

g gravitational acceleration

H  vertical height of the system

h dimensionless height

k thermal conductivity

L horizontal length of the system

m  number of horizontal grid lines

n number of vertical grid lines

Nu  Nusselt number, equation (9)

P dimensionless time period

P time period. Ijf

Pr Prandtl number, v/x

q heat transfer rate per unit area

Ra  thermal Rayleigh number,
gB(T,—TYH jav

t time

T  temperature

u dimensionless horizontal velocity
component

U horizontal velocity component

r dimensionless vertical velocity component

I vertical velocity component

X dimensionless horizontal Cartesian
coordinate

X  horizontal Cartesian coordinate

NOMENCLATURE
«  dimensionless amplitude v dimensionless vertical Cartesian ‘
A amplitude coordinate '

Y  vertical Cartesian coordinate
Z  dummy variable.

Greek symbols
x thermal diffusivity, k/pc,
/i coeflicient of thermal expansion
) relaxation parameter
0 dimensionless temperature
/ prescribed error
I Viscosity

v kinematic viscosity. p/p
p  fluid density ;
T dimensionless time i

¥  dimensionless stream function
w  dimensionless vorticity.

Subscripts
C cold wall
h hot wall
i,j nodal location
max maximum.
Superscripts
r iteration number :
denoting a quantity averaged over 2
time.

revealed that the changing wall temperature had neg-
ligible effect on the predicted flow and temperature
fields. Vasseur and Robillard [9] investigated the case
of transient convective cooling of a rectangular enclos-
ure with end walls that continually decreased in tem-
perature at a constant rate. After a sufficiently long
time, the solution became quasi-steady, and the flow
velocities, flow pattern, and the temperature difference
between the fluid and the wall became constant with
time. An interesting flow pattern developed for the
high Rayleigh number case which consisted of a pri-
mary set of counter-rotating cells with an additional
second set of counter-rotating vortices located near
the top wall at the centerline of the enclosure.

This paper investigates buoyancy-driven flow in a
differentially heated vertical enclosure driven by a
warm wall with a periodically changing surface tem-
perature. The hot wall temperature varies sinusoidally
about a mean value, and the cold wall is maintained
at a fixed temperature. The cyclic variation of the hot
driving wall approximates the boundary condition
found in many solar and energy storage applications,
building heat transfer, and many environmental pro-
cesses. Also, it is common to many industrial set-ups
as a result of the operation of the control system.

Lastly, time variation in surface temperature occurs
in electronic devices as a consequence of periodically
switching the current on and off in the various elec-
trical components.

The main objective of the present paper is to deter-
mine the effect of the oscillating surface temperature
on the fluid flow and heat transfer within the cavity.
More specifically, the effect of the amplitude and the
period of the surface temperature oscillation on the
temperature and flow fields and on the instantaneous
and time-averaged Nusselt numbers will be docu-
mented.

MATHEMATICAL FORMULATION

A schematic representation of the system under
investigation is shown in Fig. 1. The top and bottom
horizontal walls are adiabatic, and the right side wall
is maintained at a constant cold temperature. The
temperature of the opposing hot vertical driving wall
varies sinusoidally with time about a mean value,
T,. with amplitude 4 and frequency /. The hot wall
temperature is greater than the cold wall temperature
at all times, as graphically depicted in Fig. 2. Given
the oscillatory boundary condition, it is clear that the
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FiG. 1. System of interest.

solution to the system becomes periodic in time after
a sufficient number of cycles have past. Thus, this
problem has two distinct transient time periods; first,
the initial transient from ¢ = 0 to the time when the
solution starts repeating itself, and second, the steady-
period solution itself. Of greater interest is the latter
period where the effects of the amplitude and the
frequency of the hot wall oscillation are better
discerned. It is the periodic solution that is the focus
of our investigation.

To determine the behavior of the system described
above we solve numerically the pertinent governing
equations. The flow in this analysis is laminar and
two-dimensional. The thermophysical properties of
the fluid are treated as constant everywhere except
for the density in the buoyancy force term in the
momentum equations. There, according to the Bous-
sinesq approximation, the density is assumed to be a
linear function of temperature. To aid in the numerical
solution of the governing equations we first introduce
the dimensionless stream function, ¥, and dimension-
less vorticity, w, into the two momentum equations,

T, =T, + Asin 2 uft

|
>
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F1G. 2. The hot wall time-dependent boundary condition.
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eliminate the pressure gradient terms and obtain a
single vorticity equation. With the foregoing com-
ments in mind, the dimensionless stream function/
vorticity formulations of the governing equations are :

80207 +u (30/d%) +v (dw[dy) = PrV’w
+RaPr(d0/ox) (1)
00/0v+u (96/0x) +v (06/0y) = V0 @)
where

u=0y/dy;

The boundary conditions for the problem of interest
read:

v=—0y/ox; w=-=V4. 3

u=v=y=0;

00/oy=0 at y=0,1 and 0<x<L/H 4

u=v=yY=0;
=0 at x=L/H and 0<y<1 &)
u=v=yY=0;

0=14asin(2nzr/p) at x=0 and 0<y<1. (6)

All symbols have been defined in the Nomenclature.
The non-dimensionalization was carried out using the
following dimensionless variables:

x=X/H; y=YH; u=U/(e/H);
v="V/(a/H);

0= (T-TI(T,—T.); t©=t/(H0);
p=P/(H?|v); a=A/(T,~T)). (N

The dimensionless parameters that appear in the
problem include: the thermal Rayleigh number, Ra,
and the Prandtl number, Pr, the dimensionless ampli-
tude, a, and the dimensionless period, p, of oscillating
warm wall. It is the effect of these last two parameters
on the flow and heat transfer phenomena within the
system that is the main focus of our investigation.

NUMERICAL SOLUTION

The finite difference method was used to solve the
system of equations specified in the previous section.
The dimensionless governing equations (1)-(3) were
discretized using the control volume formulation and
the power law scheme [10] was employed to calculate
the heat and mass fluxes across the boundaries of each
control volume. The algebraic equations were then
solved iteratively using the Gauss—Seidel method sub-
ject to the discretized boundary conditions, equations
(4)—(6). In addition, the vorticity at the walls of the
enclosure must be specified and the formulation given
by Thom [11] was used.

Convergence was achieved at each time step accord-
ing to the following criterion:
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where Z stands for w, ¥, or T, r is the iteration level
and 4 is a prescribed error (2 = 10 7). Relaxation was
used to aid the convergence in solving the vorticity
cquation (y = 0.4), although it was not needed in the
solution of the encrgy or the stream function cqua-
tions.

Time was advanced from one time step to the next
starting from the converged solution of the previous
time step. The process continued until the solution to
the problem became periodic due to the cyclic naturc
of the boundary condition. To model accurately the
changing hot wall temperature. a single oscillation
was subdivided into 1000 time steps. To minimize the
number of cycles that are necessary for the solution
to become periodic (i.c. the initial transicnt to dic),
we began all the simulations reported in this paper
starting from an initial temperature and flow field ; in
fact, the steady-state solution to the same problem
without temperature oscillation (¢ = 0) of the hot
wall. Proceeding in this manner, we found the solution
soon began repeating itself, often in as few as two
cycles. Note that this method resulted in enormous
savings of computational time as compared io the
situation of starting the simulation from a motionless
and isothermal condition.

A non-uniform grid (m = 36 by n = 45), shown in
Fig. 3, was used in all of the simulations. The mesh is
finer at the walls where sharp temperature gradients
are expected. The code was checked for accuracy
against the earlier published numerical results of
Patterson and Imberger [2] for the problem of
transient buoyancy-induced flow in a square cavity
with a time step change in wall temperature for

(8)

F16. 3. Computational mesh.
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Ru=14x10" and Pr= 7. Suddenly, one vertical
wall became hot, and the opposite wall was cooled
while the two horizontal walls were adiabatic. We
found the streamlines and isotherm patterns obtained
using our code to be practically identical to the pub-
lished finding reported in ref. [2] over all times during
the transient evolution of the problem. A dctailed
comparison is not shown for brevity but is found in
ref. [12]. In the final steady-state, our Nusselt number
differed by only 0.21% when similar grids were used.

RESULTS AND DISCUSSION

A total of five numerical experiments were perfor-
med. The values of the parameters uscd for cach of
these runs are summarized in Table 1. The thermal
Rayleigh number, the Prandtl number, and the aspect
ratio of the enclosure were all held fixed throughout
this study in order to focus our attention on the par-
ameters that directly pertain to the oscillatory bound-
ary condition. The dimensionless period was fixed
at p =0.01 for the first three simulations and the
dimensionless amplitude of the hot wall varied. set at
0.4, 0.2, and 0.8, respectively. In the last two runs the
amplitude was constant (@ = 0.4), and the dimension-
less period of the oscillating hot wall changed. It was
first halved (simulation 4) and then it was doubled
(simulation 5) with respect to the period used in the
carlier simulations.

Figures 4- 7 report the main results of the first simu-
lation. The dimensionless hot wall boundary condition
driving the flow is graphically represented by Fig. 4.
The amplitude of the hot wall variation was 0.4, and
its period was 0.01. The simulation was carried out
for a total of four cycles, and it was found that under
these conditions the solution became periodic after
Just two cycles (i.c. the results of the fourth cycle were
identical to the results of the third cycle).

The sequence of streamlines and isotherms, plotted
at eight different times over the duration of the fourth
cycle, is shown in Fig. 5. Time increascs from Fig.
5(a) to Fig. 5(h) in equal increments ([/8 cycle), and
corresponds to the times indicated by the dashed lines
drawn on the fourth cycle of the last figure. It should
be made clear that this sequence repeats itself, and the
very next streamline and isotherm patterns generated
following Fig. 5(h) are identical to Fig. 5(a).

The streamline plots of Fig. 5 show that the flow
field is dominated by a primary large cell filling most
of the cavily rotating in a clockwise direction. Pos-
itioned in the upper left hand corner of the enclosure,
a weak small secondary cell exists rotating in the
counterclockwise direction. The sccondary cell
initially appears at t = 0.035 (Fig. 5(¢)), the time at
which the hot wall temperature cquals the average
hot wall temperature, 7. after decreasing from the
maximum value. The secondary cell grows in size and
intensity (Figs. 5(e)—(h)) over the second half of the
time period of the hot wall temperature variation
where the instantaneous hot wall temperature is
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Table 1. Summary of numerical simulations

Simulation Grid
number Ra Pr a ? At Thinal LiH (mxn)
1 1.4x10° 7 04 0.01 I1x10-3 0.04 1 36 x 46
2 1.4x10° 7 0.2 0.01 Ix10-° 0.04 1 36 x 46
3 1.4x10° 7 0.8 0.01 Ix10-° 0.04 1 36 x 46
4 1.4x10° 7 04 0.005 Ix10°° 0.02 1 36 x 46
5 1.4x10° 7 0.4 0.02 Ix10-% 0.08 i 36 x 46

always less than the average value (Fig. 4). Continuing
further in time, the region of secondary recirculation
decreases greatly in size (Fig. 5(a)) as the hot wall
temperature increases and equals T,. The secondary
cell then totally disappears as T, increases above T,
(Fig. 5(b)).

The flow in the main cell is also time-dependent. It
contains a core region at the center and, at the walls,
regions of boundary layer type flow typical of natural
convection enclosure flows at high Ra. The magnitude
and the location of the maximum stream function
change with time according to the changing hot wall
temperature. During the first half or ‘warm’ portion of
the cycle when T, > T, (Figs. 5(b)—(e)), the maximum
stream function, ¥.,,,,, in the main cell has the largest
value (Y. = 17 at 7 = 0.03375), and is positioned
toward the hot wall side of the enclosure. During
the second half of the cycle, simultaneous with the
appearance of the secondary flow, the flow intensity
in the main cell is much weaker (¥,., =11 at
7 = (,03875), and its location has shifted toward the
vertical cold wall. Comparing the time the maximum
stream function is greatest to the time at which the
hot wall temperature is maximum reveals that there
exists a phase shift in which ¥, lags the hot wall
temperature. This delay is attributed to the time
required for the heat transfer to occur, as well as the
time required for the buoyancy force to overcome the
inertia and viscous forces of the system.

The isotherms plotted in Fig. 5 also reveal inter-
esting system behavior, During the time when the hot
wall temperature is increasing (Figs. 3(a)-(c)), a well
defined thermal boundary layer is visible on both ver-
tical walls. However, when the hot wall temperature
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FiG. 4. Dimensionless oscillatory boundary condition for
simulation 1.

decreases the thermal boundary layer on the hot wall
begins to break down (Figs. 5(d)~(f)). The fluid near
the hot wall, heated earlier to a higher temperature,
now ‘floats’ to the top of the enclosure and forms a
warm pocket (Figs. 5(g), (h)). This pocket contains
fluid warmer than the hot wall. The hot wall at this
time drives the flow in the secondary recirculation cell
in the counterclockwise direction (down the hot wall).
The warm region near the top of the enclosure dis-
appears during the next cycle (Figs. 5(h)—(b)) as
energy diffuses and is advected outward until finally
achieving the rising hot wall temperature.

Note that over the time period when a portion of
the fluid in the cavity is actually warmer than the hot
wall temperature, heat is removed from the system
through the hot wall. For example, the isotherms in
Fig. 5(g) show that energy enters the enclosure only
in the bottom half of the hot wall while energy leaves
through the top half of the hot wall. Recall that this
happens in spite of the fact that the hot wall is, at all
times, at a higher temperature than the cold wall. It
is important to point out that this behavior could not
have been predicted if a quasi-steady approach was
used in solving the problem.

A Nusselt number versus time plot (Fig. 6) also
clearly shows back heat flow. The Nusselt number is
plotted over all four cycles of the numerical simulation
and is evaluated at three different locations: the hot
wall {(x = 0), the cold wall {(x = L/H), and at a pos-
ition midway (x = (L/2)/H) between the two vertical
walls. The Nusselt number is defined as

dy
X =

®)

the ratio of the actual heat transfer across the enclosure
compared to that by pure conduction heat transfer
(based on the time-averaged hot wall temperature Ty).
Note that 8 in the definition of the Nusselt number
is the instantaneous dimensionless temperature. It is
clear from Fig. 6 that the Nusselt number cycles in a
similar manner to the hot wall temperature. The value
of the Nusselt number at the hot wall fluctuates the
most, from a maximum periodic value of Nu, = 14.67
at T = 0.0314 to a minimum value of Nu, = —3.97 at
7 = 0.0364. The hot wall Nusselt number is negative
over a short duration of the cycle (0.0349 <1
< 0.0378), stating that over this time period there is

i
Nu = g/kH(T,—T)/L = L/Hf (u9—06/6x)
0
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F1G. 5. Periodic streamlines (first and third columns) and isotherms (second and fourth columns) for

simulation I. (a) 1 = 0.03, i/, = 10.{b) 7 = 0.03125, ¥ ,.. = 13. () 7 = 0.0325, Y, = 15. (d) T = 0.3375,

Yiae = 17, {e) ©=0.0350, ¢, =16, (f) ©=003625, .. =14 (g ©v=0.03750. .= 13 (h}

7 = 0.03875, ¢, = 11. Streamlines increment Ay = 1.0 for primary cell and Ay = 0.1 for secondary
cell. Isotherms increment A = (.05 starting at # = 0 from the right,

20

FiG. 6. Nusselt number dependence on time for simulation
1. Hot wall, x=0 (——); cold wall, x = L/H (—-):
midpoint, x = (L/2)/H (~--).

an overall energy loss or a ner heat transfer exiting
the cavity through the hot wall.

Midway through the enclosure, x = (L./2)/H, the
Nusselt number also varies periodically in time but
changes much less in magnitude and has a phase lag
compared to the hot wall Nusselt number. It takes on
only positive values, indicating that the net heat flow
is always toward the direction of the cold wall. At the
cold wall (x = L/H), the Nusselt number is almost
constant with respect to time and only a very slight
modulation is visible. Thus, for most practical engin-
eering applications, the cold wall heat transfer is essen-
tially constant.

The temperature and velocity profiles (Fig. 7)
explain why the heat transfer variation with time
decreases from the hot wall to the cold wall. Hori-
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(right column) at quarterly time increments for selected heights. (a) y = 0.93. (b) y = 0.80. (c) y = 0.40,
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zontal temperature and velocity profiles at four
different enclosure heights, y = 0.93, 0.80, 0.40, and
0.07, are shown in Figs. 7(a)}-(d), respectively. At
cach height, the profiles are reported at quarter cycle
intervals (when T, = Thm: Th = Thmn and T, = T,
increasing and T, = T, decreasing) over the duration
of the fourth cycle.

Referring to the temperature profiles, it is immed-
iately apparent that the oscillating hot wall temper-
ature variation is felt only partially in the enclosure.
The depth of penetration increases with the en-
closure height. For example, at y = 0.07 (Fig. 7(d)),
the hot wall temperature variation extends to x ~ 0.1
whereas at y = 0.93 the temperature variation pen-
etrates to x ~ 0.42 (Fig. 7(a)). Past these points the
temperature profiles (hence the heat flux) become
time-independent. Finally, note that the presence of
the ‘backward’ heat flow in the top half of the enclos-
ure is indicated by the positive slope of the tem-
perature profiles at the hot wall shown at two of the
four times reported in Figs. 7(a) and (b).

The velocity profiles plotted in Fig. 7 reveal that the
vertical velocity component near the cold wall remains
virtually unchanged over time but deviates greatly as
the hot wall is approached. This shows that higher
velocities are associated with higher hot wall tem-
peratures.

Effect of amplitude

Simulations 2 and 3 (Table 1) were performed to
determine the effect that the amplitude of the tem-
perature oscillation has on the system behavior. The
parameters used in runs 1-3 were all identical except
for the amplitude, which varied four-fold froma = 0.2
{simulation 2) to ¢ = 0.8 (simulation 3). The ampli-
tude of the first run was set at ¢ = 0.4, exactly halfway
between the two extremes. The results of this first
simulation were thoroughly discussed earlier in terms
of the basic physics involved in this problem and serve
as a foundation for further discussion.

For brevity we will discuss the results of simulations
2 and 3 together and will focus only on those aspects
that significantly change with amplitude. The stream-
line and isotherm plots for runs 2 and 3 are shown in
Figs. 8 and 9, respectively. The amplitude of the hot
wall temperature was ¢ = 0.2 inrun 2 and # = 0.8 in
run 3. For both cases, the solution became periodic
after just two cycles. The contours shown in Figs. 8
and 9 are the results plotted quarterly during the
fourth cycle of the simulations. Generally speaking,
we find that the same basic fluid flow and heat transfer
phenomenon identified earlier in connection with the
first simulation still applies both when we decrease
(Fig. 8) or increase (Fig. 9) the hot wall temperature
amplitude. However, the region of secondary recir-
culation and the region of back heat flow differ greatly
in size and magnitude. When a = 0.2, the secondary
cell is very small (Fig. 8(d)) and appears only for a
short time. On the other hand, for a = 0.8, the sec-
ondary cell is much larger, greater in infensity. and

M., KazZMIERCZAK and Z. CHINODA

FiG. 8. Periodic streamlines {left column) and isotherms
(right column) for simulation 2. (a) t = 0.03, Y, = 11. (b}
1= 00325, Yo =13 (€) 7=00350, Wy, =15 (d)
1= 0.0375, Y, = 13, Streamlines increment Ay = 1.0 for
primary ccll and Ay = — 1.0 for secondary cell. Isotherms
increment A = 0.035 starting at = 0 {rom the right,

exists for a longer duration of time (Figs. 9(a)~(d)).
The location of W, in the primary cells shifts from
side-to-side in a similar fashion for both amplitudes,
but the maximum magnitude changes more with time
at the higher amplitude, ie. 7 < ¥, < 22fora = 0.8
whereas 11 < . < 15 at a = 0.2. Comparing runs
2 and 3 further it is observed that back heat flow
occurs only over 25% of the hot wall surface for
a = 0.2 {Fig. 8(d)). By contrast, it extends over the
entire hot wall surface when a = 0.8 (Fig. 9(d)). This
fact is reflected in the Nusselt number versus time plots
shown in Fig. 10. When the hot wall variation i3
small (a = 0.2), the hot wall Nusselt number remains
positive for all times (Fig. 10(a)). However, when the
system is subjected to a much higher temperature
variation (g = 0.8), the Nusselt number evaluated at
the hot wall becomes negative (Fig. 10(b)) over a
fairly large portion of the cycle. Of importance is the
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FiG. 9. Periodic streamlines (left column) and isotherms
(right column) for simulation 3. (a) © = 0.03, ¥ = 7. (b)
7=0.0325, Yo = 16. (¢} 7=0.0350, ¥, =22. (&
7= 0.0375, e = 12. Streamline increment Ay = 1.0 for
primary cell and Ay = — 1.0 for secondary cell. Isotherms
increment A@ = (.05 starting at & = 0 from the right.

fact that the Nusselt numbers, for both amplitudes,
become constant at the cold wall and roughly equal
the same value.

Effect of period

The last two runs listed in Table 1 examine the
dependence of the system behavior on the period at
which the hot wall temperature oscillates. The hot
wall temperature varied exactly by the same amount
(a = 0.4) in simulations 4 and 5 but took four times
longer to change in run 5 (p = 0.02) as compared to
run 4 {p = 0.005).

The first major difference detected between these
two runs was the number of cycles required for the
solution to become periodic. The solution repeated
itself immediately after the first cycle when the wall
changed at a slow rate (run 5), while it took more
than four cycles to become periodic when the hot wall

1515
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0 0.02
T

Fi6. 10. Nusselt number dependence on time. Hot wall,
x=0 (—); cold wall, x=L/H (— —); midpoint,
x = (Lj2)/H (——). (a) Simulation 2. (b) Simulation 3.

temperature changed much faster (run 4). Recall that
the initial transient died after two cycles in simulation
1 (the same amplitude as runs 4 and 5 but with a
period halfway between the two extremes).

Once periodic, the differences in the flow and tem-
perature fields are determined by comparing Fig. 11
(run 4, p = 0.005) to Fig. 12 (run 5, p = 0.02). Both
sequences shown in Figs, 11 and 12 report the periodic
solution at quarterly time intervals starting at T;, = Ty,
and increasing. At first glance, the contours show the
same basic process for both cases as described in the
earlier runs, but a close inspection, however, reveals
several important differences. First, the size and the
magnitude of the secondary cell is larger when the
system has a longer period of temperature oscillation.
Second, the extent of back heat flow depends on the
period and is larger for the system with the shorter
period. Comparing the isotherms in Fig. 11(d) to the
isotherms in Fig. 12(d) shows that back heat flow
occurs over 25% more surface area at the shorter
period. Ramping the wall temperature at a slower
rate allows more time for the system to respond and
reduces back heat flow.

It is also observed that the longer the time period of
oscillation, the greater the fluctuation in the maximum
stream function. The system with the greater time
period has a large variation in ,,,,, 10 < ¥, < 18
(Fig. 12), while ¥, is almost constant, 12 < ¥,
< 14, for the system with a short time period (Fig.
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(a)

(b)

(¢)

(d)

Fi1G. 11. Periodic streamlines (left column) and isotherms
(right column) for simulation 4. (a) t = 0.015, .. = 12.
(b) 7 =10.01625, Y., = 12. (¢) T=0.0175, yr.,, = 14. (d)
v = 0.01875, ¥, = 13. Streamline increment Ay = 1.0 for
primary cell and Ay = —1.0 for secondary cell. Isotherms
increment A@ = 0.05 starting at 8 = 0 from the right.

11). The location of the maximum stream function is
in phase with the hot wall boundary condition
when the wall changes at a slow rate (Fig. 12) but
lags by at least 90° for the shorter time period case
(Fig. 11).

The degree of penetration of the time-dependent
boundary condition into the enclosure strongly
depends on the period of oscillation. Shorter periods
show less penetration, and longer periods result in
greater depth of penetration. This is the same trend
that is found in pure conduction heat transfer with an
oscillating boundary condition {13]. This conclusion
is drawn in this study by comparing the isotherms in
Fig. 11 to the isotherms in Fig. 12 at equivalent times.
A careful comparison of the isotherm patterns shows
that the change occurring near the hot wall, with
respect to time, is restricted to a thinner region for the
simulation with the shorter time period. This fact is
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(a)

(b)

(c)

(d)

FiG. 12. Periodic streamlines (left column) and isotherms

(right column) for simulation 5. (a) = = 0.06, {,,,, = 10. (b)

T = 0.065, ¥ = 18. (¢) T = 0.07, Yy = 3. (d) T = 0.075,

Ymax = 10. Streamline increment Ay = 1.0 for primary cell

and Ay = —1.0 for secondary cell. Isotherms increment
A0 = 0.05 starting at § = 0 from the right.

also evident in Figs. 13(a), (b), which shows the
Nusselt number fluctuation diminishing more quickly
with distance for short time periods (Fig. 13(a)) than
for long time periods (Fig. 13(b)).

Time-averaged heat transfer

The last issue to address is that of heat transfer
enhancement caused by wall temperature oscillation.
To answer this question, consider the time-averaged
heat transfer

Nu=1j Nudr. (10)
P Jeycle

The instantaneous Nusselt number, Nu, was defined
earlier in equation (9) as the dimensionless heat trans-
fer across a vertical cross-section at a particular
instant. Integration over a complete cycle yields
the time-averaged value. Once the solution becomes
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(a)

1 J
0 0.01 0.02

1 H

O(D

0.04
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0.08

F1G. 13. Nusselt number dependence on time. Hot wall,
x=0 (—); cold wall, x=L/H (—-—); midpoint,
x = (L/2)/H (——-). (a) Simulation 4. (b) Simulation 5.

periodic, Nu becomes constant and independent of
the location of X (i.e. Nu, = Nu, = Nu, ,2). Values of
Nu are reported in Table 2 for all of the simulations
along with the percentage increase (shown in
parentheses) above the constant wall temperature
solution.

Results of our study (Table 2) show that the time-
averaged heat transfer increases only marginally due
to the hot wall temperature oscillation. Two trends
are easily identified in Table 2. Increasing the ampli-
tude (for fixed period) or increasing the period (for
fixed amplitude) slightly increases the time-averaged
heat transfer. Note also that higher amplitudes and
longer periods mean more penetration of the tem-
perature oscillation into the cavity. Since the tem-
perature oscillation does not fully penetrate to the
opposite cold vertical wall, it is not surprising that the
increase in the time-averaged heat transfer through
the enclosure is small.

Table 2. Periodic time-averaged Nusselt number

Simulation o
number a P Nu

1 04 0.01 5.41 (1.7%)

2 0.2 0.01 5.35 (0.6%)

3 0.8 0.01 5.58 (4.9%)

4 0.4 0.005 5.36 (0.8%)

5 0.4 0.02 543 (2.1%)
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CONCLUSIONS

This study helped clarify the role and relative
importance of time-dependent boundary conditions
on thermally-driven convection in enclosures. More
specifically, this paper numerically investigated natu-
ral convection in a square enclosure with an oscil-
latory hot wall temperature opposite a vertical
constant cold wall. For the parametric domain inves-
tigated, the following main conclusions were reached.

(1) The solution became periodic after a small
number of cycles. The number depended inversely on
the period but was independent of the amplitude.

(2) The periodic flow field in all cases consisted of
a primary cell which fluctuated in intensity and in the
location of ... A weak secondary cell periodically
appeared in the upper left hand corner of the enclosure
and back heat flow occurred over certain times over
a large portion of the hot driving wall. The wall tem-
perature oscillations penetrated only partially into the
enclosure. The Nusselt number varied with the same
period as the hot wall temperature. Its amplitude
quickly decreased with distance into the enclosure and
became nearly constant at the cold wall.

(3) Increasing the amplitude or the period of the
hot wall temperature oscillation increased the size and
the intensity of the secondary region of recirculation
and increased the distance the hot wall temperature
variation was felt into the enclosure. Also, greater
variation in Y, is associated with larger values of
amplitude and longer periods.

(4) Increasing the amplitude or decreasing the
period of the hot wall temperature oscillation increased
the extent and the duration of the back heat flow.

(5) Despite the time-dependent boundary condition
and the drastically changing flow and temperature
fields, the average heat transfer across the enclosure
per cycle was approximately equal to the value for the
enclosure with a fixed (mean) hot wall temperature.
Increasing the amplitude or the period of the hot wall
temperature oscillation increased the cycle-averaged
heat transfer only slightly.
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ECOULEMENT DE CONVECTION NATURELLE DANS UNE CAVITE AVEC DES
CONDITIONS AUX LIMITES PERIODIQUES DANS LE TEMPS

Résumé—On étudie numériquement le probléme de I'écoulement laminaire de convection naturelle dans
une cavité carrée ayant une paroi verticale chaude a température uniforme mais périodiquement variable
dans le temps. Cetfe température varie sinusoidalement autour d’une température fixée. La paroi opposée
froide est maintenue 4 température constante. Des solutions sont obtenues pour différents cas qui illustrent
les effets des oscillations de température de la surface sur 'écoulement et le transfert thermique a travers
Ia cavité. Les solutions obtenues sont périodiques dans le temps. Ces lignes de courant montrent qu’un
petit écoulement secondaire apparait de fagon intermittente dans le coin supérieur prés de la paroi chaude
et qu’il tourne dans le sens opposé a celui de I'écoulement principal. Le flux thermique instantané a travers
la surface fluctue fortement et pendant une certaine durée, la chaleur enlevée concerne un large segment
de la surface chaude. L’effet du changement périodique de température pariétale est partiellement sensible
dans la cavité et globalement le transfert moyenné dans le temps, & travers la cavité, est pratiquement
insensible 4 la condition thermique péeriodique.

AUFTRIEBSSTROMUNG IN EINEM HOHLRAUM MIT ZEITLICH PERIODISCHEN
RANDBEDINGUNGEN

Zusammenfassung—Das Problem der laminaren Auftriebsstrémung in einem quadratischen Hohlraum
wird numerisch untersucht. Die Strdmung entsteht dadurch, daf eine senkrechte Wand eine gleichfSrmige,
zeitlich periodisch schwankende Oberflichentemperatur besitzt. Die Temperaturschwankungen sind sinus-
férmig, ihr Mittelwert konstant. Die gegeniiberliegende kalte Wand wird auf konstanter Temperatur
gehalten. Fiir eine Anzahl unterschiedlicher Falle werden Losungen ermittelt, die die Einfliisse der osz-
illierenden Oberflichentemperatur auf die Fluidstrémung und den Wirmeiibergang im Hohlraum
aufzeigen. Die ermittelten transienten Ldsungen sind alle zeitlich periodisch. Die Stromlinien zeigen eine
schwache sekundire Strémungszelle, die intermittierend auftritt und anschlieBend in der oberen Ecke des
Hohlraums nahe der wirmeren Wand verschwindet. Diese Zellen rotieren umgekehrt zur Hauptstrémung.
Der Momentanwert der Warmestromdichte durch die heifle Wand weist starke zeitliche Schwankungen
auf, wobei es in bestimmten Zeitintervallen zur Riickstrémung von Wirme in grofien Teilen der heifien
Fliiche kommt. Der EinfluB der periodisch schwankenden Wandtemperatur ist nur teilweise im Hohlraum
festzustellen. Im ganzen gesehen ist der zeitlich gemittelte Wirmeiibergang im gesamten Hohlraum ziemlich
unempfindlich gegentiber der zeitabhingigen Randbedingung.

BBI3BAHHOE IMOJABEMHON CUWIOU TEYEHHME B MOJIOCTU C NEPHOANYECKH
W3MEHAIOHIIMHKCA BO BPEMEHHW IN'PAHMYHBIMH YVCIIOBUAMH

Annoramus—YHCIEHHO MCClenyeTcs 3a4a4a O BBI3BAHHOM [OIBEMHOR CHIOH TAMHHADHCM TEYCHUM B
KBaAPAaTHOH MOJIOCTH C HarpeTol BEPTUKANLHOH CTEHKOM, Ha MOBEPXHOCTH KOTOPOH HOIACPKABACTCS
ONMHAKOBAR TEMNCPATYPA, IEPHOAMYECKH H3MEHSIOUIAACA BO BpEMEHH. DTa TEMIEPATYPa H3MCHNCTCS
CHHYCORAANBLHO, KOAEBIACh OK0JI0 (PUKCHPOBAHHOIO Cpe/Hero 3uadenus. [IpOTHBOMOMOKHAR HCHATDE-
Tas CTeHKa MOAMEPXHBACTCH NPH OCTOSHEOH TeMnepaTtype. loiyueHb: peuseHHs A paja Ciy4acs,
HITIOCTPHPYIOUIHE BiiMsHEe KoNeOaHNH TEMIEPATyPHl HOBEPXHOCTH Ha TCHYCHUE XHMAKOCTH U Temione-
peHoc B MONOCTH. Bee MoJyYeHHbIe HECTAIMOHAPHEIE PEILEHHA TEPHOMHYECKE H3MCHSAOTCS BO BPEMEHU.
JIusME TOKA CBHARTENLCTBYIOT O TOM, YTO B BEPXHEM YIJIy MOJOCTH y HATPETOH CTEHKH MEPHOINNYECKH
BOIHMKAET M 3aTeM HcuesaeT Aveika caboro BTOPHYHOTO TEHYEHHs, BpAlUAromIascs B HANpPaBJICHHH,
0o6paTHOM OCHOBHOMY TEYCHHIO. MIHOBEHHBIH TEIUIONEPEHOC Yepe3 HArpeTyio CTCHKY CYWIECTBEHHO
GYKTYHpYeT BO BPEMEHH H CHYCTA HEKOTODOE BpeMS HPOHCXOZNT OTBOZ Tensa ¢ GOJBLIOrO yd4acTxa
parperoit nosepxHocTH. J(PeRT NepHONMYECKOTO H3MEHEHHS TEMIEPaTyphl CTEHKH TIpOABJseTCs B
NOAOCTH JIAIL YACTHYO, ¥ B IENIOM OCPEIHEHHLI MO BPEMEHH TEILIONEPEHOC MaJIo 3aBHCHT OT HECTa-
UMOHAPHBIX FPaHMYHBIX YCIOBHIL.



