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Abstract-The problem of laminar buoyancy-driven Aow in a square cavity driven by a warm vertical wall, 
having a uniform surface temperature whose magnitude is changing periodically with time, is investigated 
numerically. The warm wall surface temperature varies sinusoidally, oscillating about a Fixed mean tem- 
perature. The opposite cold wall is maintained at a constant temperature. Solutions are obtained for a 
number of different cases which illustrate the effects of the oscillating surface temperature on the fluid flow 
and the heat transfer through the enclosure. The transient solutions obtained are all periodic in time. The 
streamlines show that a weak secondary flow cell intermittently appears and then disappears in the upper 
corner of the enclosure near the hot driving wall, rotating in a direction opposite to the main flow. The 
instantaneous heat flux through the hot wall fluctuates greatly in time and over certain times heat removal 
occurs over a large segment of the hot driving surface. The effect of the periodically changing wall 
temperature is felt only partially into the enclosure and, overall, the time-averaged heat transfer across the 

enclosure is rather insensitive to the time-dependent boundary condition, 

INTRODUCTION 

NUMEROUS studies exist in the literature that investi- 
gate natural convection in enclosures. Interest is justi- 
fied by its many applications which include heating 
and cooling of buildings, solar energy utilization, ther- 
mal energy storage, ~onv~tion in lakes and small 
bodies of water, and more recently, cooling of elec- 
tronic equipment. An overview of this important area 
in heat transfer is given in ref. [I]. 

The majority of the published work in free con- 
vection in enclosures that exists today considers the 
steady-state phenomenon. The driving walls of the 
enclosure are customarily held at a constant tem- 
perature or heat flux. However, in many of the appli- 
cations listed above, the thermal boundary conditions 
vary with time and, therefore, in reality, a transient 
or unsteady convective flow ensues. More specifically, 
in the cooling of electronic equipment, the electrical 
components are frequently energized inte~ittently 
and, therefore, generate heat in an unsteady manner. 
This heat is then removed by natural convection, 
Time-dependent boundary conditions are also clearly 
present in building heat transfer where the ‘un- 
steadiness’ is induced by the changing ambient con- 
ditions and by inte~ittent usage of the heating 
system. In spite of these facts, little work has been 
performed in the field of transient natural convection 
in enclosures. 

The limited number of transient studies almost 

~animously considered a step c~ffn~e (with respect 
to time) in the wall boundary conditions [2-S]. In 
these studies, ,the researchers examined the changing 
temperature and flow fields as they evolved over time 
as the system approached the new steady-state 
solution. The case of a vertical fluid layer initially 
motionless and at a uniform temperature when sub- 
jected to a sudden change in the two end wall tem- 
peratures to Z”+AT, respectively, at time t = 0 was 
investigated in refs. [2-61. The transient behavior of 
an enclosure when the temperature of only a single 
wall was suddenly changed, while the other walls were 
adiabatic, was studied by Nicolette et af. [7] and Hall 
et al. [S]. 

Transient natural convection studies involving 
more physically realistic boundary conditions where 
the wall temperature gradually changes over time have 
received less attention. To the best of the authors’ 
knowledge, the only available studies of this type, 
pertaining to rectangufar geometry, are the works of 
Schladow et al. [5] and Vasseur and Robillard [9]. 
The former study mainly investigated transient natu- 
ral convective flow induced by a sudden change in wall 
temperature. In an attempt to explain discrepancies 
found between their numerical simulation and exper- 
imental observations of the flow field, Schladow et al. 

performed an additional run in which they ramped 
the driving wall temperature in a linear fashion over 
a five second interval equal in magnitude to the step 
change. Comparison between the two simulations 
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NOMENCLATURE 

dimensionless amplitude 
amplitude 
specific heat at constant pressure 

frequency 
gravitational acceleration 
vertical height of the system 
dimensionless height 
thermal conductivity 
horizontal length of the system 
number of horizontal grid lines 

number of vertical grid lines 
Nusselt number, equation (9) 
dimensionless time period 
time period. I/yf 
Prandtl number, 1’:~ 
heat transfer rate per unit area 
thermal Rayleigh number. 
,qfi( T,,, - T,)H3m 

1’ dimensionless vertical Cartesian 
coordinate 

Y vertical Cartesian coordinate 
Z dummy variable. 

Greek symbols 
thermal diffusivity, li/p~; 
coefficient of thermal expansion 
relaxation parameter 
dimensionless temperature 
prescribed error 
viscosity 
kinematic viscosity. p/p 
fluid density 
dimensionless time 

dimensionless stream function 
dimensionless vorticity. 

time Subscripts 
temperature c cold wall 
dimensionless horizontal velocity h hot wall 
component i. .i nodal location 
horizontal velocity component max maximum. 
dimensionless vertical velocity component 
vertical velocily component Superscripts 
dimcnsionlcss horizontal Cartesian I iteration number 

coordinate denoting a quantity averaged ovet 

horizontal Cartesian coordinate time. 

revealed that the changing wall temperature had neg- 

ligible effect on the predicted flow and temperature 
ficlds. Vasseur and Robillard [9] investigated the case 
of transient convective cooling of a rectangular enclos- 
ure with end walls that continually decreased in tem- 
perature at a constant rate. After a sufficiently long 
time. the solution became quasi-steady, and the flow 
velocities, flow pattern, and the temperature difference 
between the fluid and the wall became constant with 
time. An interesting flow pattern developed for the 
high Rayleigh number case which consisted of a pri- 
mary set of counter-rotating cells with an additional 
second set of counter-rotating vortices located near 
the top wall at the centerline of the enclosure. 

This paper investigates buoyancy-driven flow in a 
differentially heated vertical enclosure driven by a 
warm wall with a periodically changing surface tem- 
perature. The hot wall temperature varies sinusoidally 
about a mean value, and the cold wall is maintained 
at a fixed temperature. The cyclic variation of the hot 
driving wall approximates the boundary condition 
found in many solar and energy storage applications, 
building heat transfer, and many environmental pro- 
cesses. Also, it is common to many industrial set-ups 
as a result of the operation of the control system. 

Lastly, time variation in surface temperature occurs 
in electronic devices as a consequence of periodically 
switching the current on and off in the various elec- 
trical components. 

The main objective of the present paper is to deter- 

mine the effect of the oscillating surface temperature 
on the fluid flow and heat transfer within the cavity. 
More specifically, the effect of the amplitude and the 
period of the surface temperature oscillation on the 
temperature and flow fields and on the instantaneous 
and time-averaged Nusselt numbers will be docu- 
mented. 

MATHEMATICAL FORMULATION 

A schematic representation of the system under 
investigation is shown in Fig. I. The top and bottom 
horizontal walls are adiabatic, and the right side wall 
is maintained at a constant cold temperature. The 
temperature of the opposing hot vertical driving wall 
varies sinusoidally with time about a mean value, 
T,,, with amplitude A and frequency ,f: The hot wall 
temperature is greater than the cold wall temperature 
at all times, as graphically depicted in Fig. 2. Given 
the oscillatory boundary condition, it is clear that the 



Buoyancy-driven flow in an enclosure 1509 

T, l- 
H 

I 

adiabatic 

FIG. 1. System of interest. 

solution to the system becomes periodic in time after 
a sufficient number of cycles have past. Thus, this 
problem has two distinct transient time periods ; first, 
the initial transient from t = 0 to the time when the 
solution starts repeating itself, and second, the steady- 
period solution itself. Of greater interest is the latter 
period where the effects of the amplitude and the 
frequency of the hot wall oscillation are better 
discerned. It is the periodic solution that is the focus 
of our investigation. 

To determine the behavior of the system described 
above we solve numerically the pertinent governing 
equations. The flow in this analysis is laminar and 
two-dimensional. The thermophysical properties of 
the fluid are treated as constant everywhere except 
for the density in the buoyancy force term in the 
momentum equations. There, according to the Bous- 
sinesq approximation, the density is assumed to be a 
linear function of temperature. To aid in the numerical 
solution of the governing equations we first introduce 
the dimensionless stream function, $, and dimension- 
less vorticity, w, into the two momentum equations, 

Jh= T+Asin2rft 

?lh 

T 

-P=llf-! 

Tc 

Time 

FIG. 2. The hot wall time-dependent boundary condition. 

eliminate the pressure gradient terms and obtain a 

single vorticity equation. With the foregoing com- 
ments in mind, the dimensionless stream function/ 

vorticity formulations of the governing equations are : 

am/a7 + u (at0jax) + v (aw/ay) = Pr vb 

+Ru Pr (aejax) (1) 

aejaz + u (aejax) + v (aejay) = v*6 (2) 

where 

u=a*jay; v = -a*jax; W= -vSj. (3) 

The boundary conditions for the problem of interest 

read : 

u=v=$=O; 

al?/+ = 0 at y = 0,l and 0 <x < L/H (4) 

u=v=jj=O; 

8=0 at x=L/H and O<y<l (5) 

u=v=$=O; 

0=l+asin(2rrz/p) at x=0 and O<ybl. (6) 

All symbols have been defined in the Nomenclature. 

The non-dimensionalization was carried out using the 
following dimensionless variables : 

x = X/H; y = Y/H; u = U/(a/H); 

v = V/(a/H); 

0 = (T- T,)/(F,, - T,) ; z = t/(H’/a) ; 

p = P/(H’/a) ; a = A/(F,, - T,). (7) 

The dimensionless parameters that appear in the 
problem include : the thermal Rayleigh number, Ra, 
and the Prandtl number, Pr, the dimensionless ampli- 
tude, a, and the dimensionless period, p, of oscillating 
warm wall. It is the effect of these last two parameters 
on the flow and heat transfer phenomena within the 
system that is the main focus of our investigation. 

NUMERICAL SOLUTION 

The finite difference method was used to solve the 
system of equations specified in the previous section. 
The dimensionless governing equations (l)-(3) were 
discretized using the control volume formulation and 
the power law scheme [lo] was employed to calculate 
the heat and mass fluxes across the boundaries of each 
control volume. The algebraic equations were then 
solved iteratively using the Gauss-Seidel method sub- 
ject to the discretized boundary conditions, equations 
(4)-(6). In addition, the vorticity at the walls of the 
enclosure must be specified and the formulation given 
by Thorn [l 1] was used. 

Convergence was achieved at each time step accord- 
ing to the following criterion : 
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~lz:,:‘-z:,l 
r., 

clz:,:‘I < i 
(8) 

where Z stands for CU, c’/. or ?-, I‘ is the iteration Ic\cl 

and i is a prescribed error (j. = 10 ‘). Relaxation was 
used to aid the convergcncc in solving the vorticity 
equation (7 = 0.4). although it was not needed in the 
solution of the cncrgy or the stream function cquo- 
tions. 

Time was advanced from one time step to the next 
starting from the converged solution of the previous 
time step. The process continued until the solution to 
the problem became periodic due to the cyclic nature 
of the boundary condition. To model accurately the 
changing hot wall temperature. R single oscillation 
was subdivided into 1000 time steps. To minimize the 
number of cycles that are necessary for the solution 
to become periodic (i.e. the initial transient to die). 
we began all the simulations reported in this paper 
starting from an initial temperature and flow field ; in 

fact, the steady-state solution to the same problem 
without temperature oscillation ((I = 0) of the hot 
wall. Proceeding in this manner. we found the solution 
soon began repeating itself. often in as few as two 
cycles. Note that this method resulted in enormous 
savings of computational time as compared LO the 
situation of starting the simulation from a motionless 
and isothermal condition. 

A non-uniform grid (777 = 36 by 17 = 45). shoun in 
Fig. 3. was used in all of the simulations. The mesh ib 
finer at the walls where sharp temperature gradients 
are expcctcd. The code was checked for accuracy 
against the earlier published numerical results of 
Patterson and lmbergcr [2] for the problem of 
transient buoyancy-induced flow in a square cavity 
with a time step change in wall temperature l’ot 

FIG. 3. Computational mesh 

Rtr = 1.4 x IO’ and Pr = 7. Suddenly. one vertic;ll 
wall became hot. and the opposite wall was cooled 
while the two horizontal walls were adiabatic. WC 
Ihund the strcamlincs and isotherm patterns obtained 
using out- code to be practically identical to the pub- 
lished finding reported in ref. [2] over all times during 
the transient evolution of the problem. A detailed 
comparison is not shown for brevity but is found in 
I-cl.. [l2]. In the final steady-state. our Nusselt numbol 
differed by only 0.21 “/;B when similar grids wcrc used 

RESULTS AND DISCUSSION 

A total of five numerical experiments wcrc pcrfor- 
med. The values of the parameters used for each or 
these runs arc summarized in Table I. The thermal 
Rayleigh number, the Prandtl number, and the aspect 
ratio of the enclosure wcrc all held fixed throughout 
this study in order to 1‘0~~1s our attention on the par- 
ameters that directly pertain to the oscillatory bound- 
ary condition. The dimensionless period was fixed 

at p = 0.01 for the first three simulations and the 
dimensionless amplitude of the hot wall varied. set at 
0.4, 0.2. and 0.8, respectively. In the last two runs the 
amplitude was constant (n = 0.4). and the dimcnsion- 
less period of the oscillating hot wall changed. It was 
first halved (simulation 4) and then it was doubled 
(simulation 5) with respect to the period used in the 
earlier simulations. 

Figures 4 7 report the main results of the first simu- 
lation. The dimensionless hot wall boundaq condition 
driving the flow is graphically rcpresentcd by Fig. 4. 
The amplitude of the hot wall variation was 0.4, and 
its period was 0.01. The simulation was carried out 
for a total of four cycles, and it was found that under 
these conditions the solution became periodic after 
just two cycles (i.c. the results of the fourth cycle were 
identical to the results of the third cyclcj. 

The sequence of streamlines and isotherms, plotted 
at eight different times over the duration of the fourth 
cycle, is shown in Fig. 5. Time incrcascs from Fig. 
5(a) to Fig. S(h) in equal increments (I!‘8 cycle). and 
corresponds to the times indicated bl Lhe dashed lines 
drawn on the fourth cycle of the last figure. It should 
bc made clear that this sequence repeats itself. and the 
very next streamline and isotherm patterns generated 
following Fig. 5(h) are identical to Fig. 5(a). 

The streamline plots of Fig. 5 show that the flab 

field is dominated by a primary larsc cell filling most 
of the cavity rotating in a clockwise direction. Pos- 
itioncd in the upper left hand corner of the enclosure. 
a weak small secondary cell exists rotating in the 
counterclockwise direction. The secondary cell 
initially appears at 7 = 0.035 (Fig. S(e)). the time at 
which the hot wall temperature equals the average 
hot wall temperature. p,,. after decrcasmg from the 
maximum value. The secondary cell grows in size and 

intensity (Figs. S(e)-(h)) over the second half of the 
time period of the hot wall temperature variation 
where the instantaneous hot wail temperature IS 
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Table 1. Summary of numerical simulations 
I- 

Simulation Grid 
number Ra Pr a P AT %il L/H (mxn) 

1 1.4x IO5 7 0.4 0.01 1x1o-5 0.04 1 36x46 
2 1.4x lo5 7 0.2 0.01 1x1o-5 0.04 1 36x46 
3 1.4x105 7 0.8 0.01 1x10-5 0.04 1 36x46 
4 1.4x IO5 7 0.4 0.005 1x1o-5 0.02 1 36x46 
5 1.4x IO5 7 0.4 0.02 1 x LO-5 0.08 1 36x46 

.______ 

always less than the average value (Fig. 4). Continuing 
further in time, the region of secondary recirculation 
decreases greatly in size (Fig. 5(a)) as the hot wall 
temperature increases and equals F,,. The secondary 
cell then totally disappears as T,, increases above Fb 
(Fig. 5(b)). 

The flow in the main cell is also time-dependent. It 
contains a core region at the center and, at the walls, 
regions of boundary layer type flow typical of natural 
convection enclosure flows at high Ra. The magnitude 
and the location of the maximum stream function 
change with time according to the changing hot wall 
temperature. During the first half or ‘warm’ portion of 
the cycle when Th > i;h (Figs. S(b)-(e)), the maximum 
stream function, $,,,, in the main cell has the largest 
value ($_ = 17 at t = 0.03375), and is positioned 
toward the hot wall side of the enclosure. During 
the second half of the cycle, simultaneous with the 
appearance of the secondary flow, the flow intensity 
in the main cell is much weaker ($,,, = 11 at 
r = 0.03875), and its location has shifted toward the 
vertical cold wall. Comparing the time the maximum 
stream function is greatest to the time at which the 
hot wall temperature is maximum reveals that there 
exists a phase shif in which tlfmax lags the hot wall 
temperature. This delay is attributed to the time 
required for the heat transfer to occur, as well as the 
time required for the buoyancy force to overcome the 
inertia and viscous forces of the system. 

The isotherms plotted in Fig. 5 also reveal inter- 
esting system behavior. During the time when the hot 
wall temperature is increasing (Figs. 5(a)-(c)), a well 
defined thermal boundary layer is visible on both ver- 
tical walls. However, when the hot wall temperature 

T 

FIG. 4. Dimensionless oscillatory boundary condition for 
simulation 1. 

decreases the thermal boundary layer on the hot wall 
begins to break down (Figs. 5(d)-(f)). The fluid near 
the hot wall, heated earlier to a higher temperature, 
now ‘floats’ to the top of the endosure and forms a 
warm pocket (Figs. 5(g), (h)). This pocket contains 
fluid warmer than the hot wall. The hot wall at this 
time drives the flow in the secondary recirculation cell 
in the counterclockwise direction (down the hot wall). 
The warm region near the top of the enclosure dis- 
appears during the next cycle (Figs. 5(h)-(b)) as 
energy diffuses and is advected outward until finally 
achieving the rising hot wall temperature. 

Note that over the time period when a portion of 
the fluid in the cavity is actually warmer than the hot 
wall temperature, heat is removed from the system 
through the hot wall. For example, the isotherms in 
Fig. 5(g) show that energy enters the enclosure only 
in the bottom half of the hot wall while energy leaves 
through the top half of the hot wall. Recall that this 
happens in spite of the fact that the hot wall is, at all 
times, at a higher temperature than the cold wall. It 
is important to point out that this behavior could not 
have been predicted if a quasi-steady approach was 
used in solving the problem. 

A Nusselt number versus time plot (Fig. 6) also 
clearly shows back heat flow. The Nusselt number is 
plotted over all four cycles of the numerical simulation 
and is evaluated at three different locations: the hot 
wall (X = 0), the cold wall (X = L/H), and at a pos- 
ition midway (X = (L/2)~~) between the two vertical 
walls. The Nusselt number is defined as 

Nu = q/kH(rii, - T,)/L = L/H 

d Ix= 

’ (u0-86ji3x) dy 

(9) 

the ratio of the actual heat transfer across the enclosure 
compared to that by pure conduction heat transfer 
(based on the time-averaged hot wall temperature T,,). 
Note that B in the definition of the Nusselt number 
is the instantaneous dimensionless temperature. It is 
clear from Fig. 6 that the Nusselt number cycles in a 
similar manner to the hot wall temperature. The value 
of the Nusselt number at the hot wall fluctuates the 
most, from a maximum periodic value of NU,, = 14.67 
at z = 0.03 14 to a minimum value of Nu,, = - 3.97 at 
r = 0.0364. The hot wall Nusselt number is negative 
over a short duration of the cycle (0.0349 < z 
G 0.0378) stating that over this time period there is 
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(a) 

fbf 

FIG. 5. Periodic streamlines (first and third columns) and isotherms (second and fourth columns) for 
simulation I. (a) 7 = 0.03.$,,,,,, = 10. (b) T = 0.03125, $,,,._ = 13. (c) T = 0.0325, $ ,“:,, = IS. (ti) 7 = 0.3375. 
I,?,,_ = 17. (c) r =0.0350, $,,,,!, = 16. (f) T = 0.03625. tii,,,, = 14. (9) T =0.03750. IL,,,,, : 13. (h) 
T = 0.03875, th ,,,., \ = Il. Str~~milnes increment A$ = 1 .(I for primary cell and A$ = -- 0. I for secondary 

cell. Isotherms increment A0 r= 0.05 starting at 0 = 0 from the right. 

an overall energy loss or a not heat transfer exiting 

the cavity through the hot wall. 
Midway through the enclosure, .Y = (L/2)/H, the 

Nusselt number also varies periodically in time but 
changes much less in magnitude and has a phase lag 
compared to the hot wall Nusselt number. It takes on 
only positive values, indicating that the net heat flow 
is always toward the direction of the cold wall. At the 
cold wall (s = L/H), the Nusselt number is almost 
constant with respect to time and only a very slight 
modulation is visible. Thus. for most practical engin- 
eering applic~tiolls. thecold wall heat transfer isessen- 
tiaily constant. 

FIG. 6. Nusselt number dependence on time for simulation 
The temperature and velocity profiles (Fig. 7) 

I. Hot wall, .Y = 0 (-); cold wall, x = L/H (-~-. --): explain why the heat transfer variation with time 

midpoint, s = (L/2)/H (- -). decreases from the hot wall to the cold wall. Hori- 
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FIG. 7. Simulation 1 periodic temperature profiles (left column) and vertical velocity component profiles 
(right column) at quarterly time increments for selected heights. (a) y = 0.93. (b) y = 0.80. (c) y = 0.40. 

(d) y = 0.07. 
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zontal temperature and velocity profiles at four 

different enclosure heights. J = 0.93, 0.80, 0.40, and 
0.07, are shown in Figs. 7{a)-(d), respectively. At 
each height. the profiles are reported at quarter cycle 

intervals (when r,, = Tr, .“,, Ix ; T,, = Fh .,,, i,, and 7;, = T,, 
increasing and I”,, = T,, decreasing) over the duration 
of the fourth cycle. 

Referring to the temperature protiles. it is immcd- 
iately apparent that the oscillating hot wall tempcr- 
ature variation is Felt only partially in the enclosure. 

The depth of penetration increases with the en- 
closure height. For example, at _r = 0.07 (Fig. 7(d)), 
the hot wall temperature variation extends to .V z 0. I 
whereas at ,r = 0.93 the temperature variation pen- 
etrates to x 2 0.42 (Fig. 7(a)). Past these points the 
temperature profiles (hence the heat flux) become 
time-independent. Finally. note that the presence of 
the ‘backward’ heat flow in the top half of the cnclos- 
urc is indicated by the positive slope of the tcm- 
perature profiles at the hot wall shown at two of the 
four times reported in Figs. 7(a) and (b). 

The velocity profiles plotted in Fig. 7 reveal that the 

vertical velocity component near the cold wall remains 
virtually unchanged over time but deviates greatly as 
the hot wall is approached. This shows that highct 
velocities are associated with higher hot wall tem- 

peratures. 

Simulations 2 and 3 (Table 1) were performed to 
determine the effect that the amplitude of the tem- 
perature oscillation has on the system behavior. The 
parameters used in runs I-~3 were all identical except 
for the amplitude, which varied four-fold from a = 0.2 

(simulation 2) to (I = 0.8 (simulation 3). The ampli- 
tude of the first run was set at a = 0.4, exactly halfway 
between the two extremes. The results of this first 
simulation were thoroughly discussed earlier in terms 
of the basic physics involved in this problem and serve 
as a foundation for further discussion, 

For brevity we will discuss the results of simulations 
2 and 3 together and will focus only on those aspects 
that significantly change with amplitude. The stream- 
line and isotherm plots for runs 2 and 3 are shown in 
Figs. 8 and 9, respectively. The amplitude of the hot 
wall temperature was u = 0.2 in run 2 and CI = 0.8 in 
run 3. For both cases, the solution became periodic 
after just two cycles. The contours shown in Figs. 8 
and 9 are the results plotted quarterly during the 
fourth cycle of the simulations. Generally speaking, 
we find that the same basic fluid flow and heat transfer 
phenomenon identified earlier in connection with the 
first simulation still applies both when we decrease 
(Fig. 8) or increase (Fig. 9) the hot wall temperature 
amplitude. However, the region of secondary recir- 
culation and the region of back heat flow differ greatly 
in size and magnitude. When a = 0.2, the secondary 
cell is very small (Fig. 8(d)) and appears only for a 
short time. On the other hand, for CI = 0.8, the sec- 
ondary cell is much larger. greater in intensity. and 

(a) 

(b) 

(d) 

FIG. 8. Periodic streamlines (left column) alId isotherms 
(right column) for simulation 2. (a) T = 0.03, $,,, = II. (b) 
T = 0.0325, i,,;,, = 13. (c) T = 0.0350. $,,,,,, = 15. Cd) 
T -= 0.0375, $,,;,, = 13. Streamlines increment A$ = 1.0 t’o~ 
primary ccl1 and A$ = - I.0 for secondary cell. Isotherms 

increment A0 = 0.05 starting at 11 = 0 from the right. 

exists for a longer duration of time (Figs. 9(a)--(d)). 
The location of $,,, in the primary cells shifts from 

side-to-side in a similar fashion for both amplitudes, 
but the maxim~lm magnitude changes more with time 
at the higher amplitude, i.e. 7 d $I~,,~,, C 22 for a = 0.8 
whereas I1 ,< $n,nx < 15 at a = 0.7. Comparing runs 
2 and 3 further it is observed that back heat flow 
occurs only over 25% of the hot wall surface for 
a = 0.2 (Fig. 8(d)). By contrast, it extends over the 
entire hot wall surface when a = 0.8 (Fig. 9(d)). This 
fact is reflected in the Nusselt number versus time plots 
shown in Fig. 10. When the hot wall variation is 
small (n = 0.2), the hot wall Nusselt number remains 
positive for all times (Fig. IO(a)). However, when the 
system is subjected to a much higher temperature 
variation (ct = 0.X), the Nusselt number evaluated at 
the hot wall becomes negative (Fig. to(b)) over a 
fairly large portion of the cycle. Of importance is the 
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(a) 

(b) 

(dl 

FIG. 9. Periodic streamlines (left column) and isotherms 
(right column) for simulation 3. (a) T = 0.03, $, = 7. (b) 
5 = 0.0325, I//,,, = 16. (c) r = 0.03501 jr,, = 22. (d) 
% = 0.0375, ji,, = 12. Streamline increment A$ = 1.0 for 
primary cell and A$ = - 1 .O for secondary cell. Isotherms 

increment A0 = 0.05 starting at 0 = 0 from the right. 

fact that the Nusselt numbers, for both amplitudes, 
become constant at the cold wall and roughly equal 
the same value. 

Effect of period 
The last two runs listed in Table 1 examine the 

dependence of the system behavior on the period at 
which the hot wall temperature oscillates. The hot 
wall temperature varied exactly by the same amount 
(a = 0.4) in simulations 4 and 5 but took four times 
longer to change in run 5 (p = 0.02) as compared to 
run 4 (p = 0.005). 

The first major difference detected between these 
two runs was the number of cycles required for the 
solution to become periodic. The solution repeated 
itself immediately after the first cycle when the wall 
changed at a slow rate (run 5), while it took more 
than four cycles to become periodic when the hot wall 
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FIG. 10. Nusselt number dependence on time. Hot wall, 
x = 0 (--) ; cold wall, x = L/H (- .-) ; midpoint, 

x = (L/2)/H (--). (a) Simulation 2. (b) Simulation 3. 

temperature changed much faster (run 4). Recall that 
the initial transient died after two cycles in simulation 
1 (the same amplitude as runs 4 and 5 but with a 
period halfway between the two extremes). 

Once periodic, the differences in the flow and tem- 
perature fields are determined by comparing Fig. 11 
(run 4, p = 0.005) to Fig. 12 (run 5, p = 0.02). Both 
sequences shown in Figs, 11 and 12 report the periodic 
solution at quarterly time intervals starting at Th = YPh 
and increasing. At first glance, the contours show the 
same basic process for both cases as described in the 
earlier runs, but a close inspection, however, reveals 
several important differences. First, the size and the 
magnitude of the secondary cell is larger when the 
system has a longer period of temperature oscillation. 
Second, the extent of back heat flow depends on the 
period and is larger for the system with the shorter 
period. Comparing the isotherms in Fig. 1 l(d) to the 
isotherms in Fig. 12(d) shows that back heat flow 
occurs over 25% more surface area at the shorter 
period. Ramping the wall temperature at a slower 
rate allows more time for the system to respond and 
reduces back heat flow. 

It is also observed that the longer the time period of 
oscillation, the greater the ~uctuation in the maximum 
stream function. The system with the greater time 
period has a large variation in rl/,,,,%, 10 < $,,, 6 18 
(Fig. 12), while e,,,,, is almost constant, 12 6 +maX 
< 14, for the system with a short time period (Fig. 
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(b) 

(d) 

FIG. 11. Periodic streamlines (left column) and isotherms 
(right column) for simulation 4. (a) t = 0.015, $,,,.. = 12. 
(b) T = 0.01625, $max = 12. (c) 5 = 0.0175, tjmsx = 14. (d) 
t = 0.01875, *m*x = 13. Streamline increment AI/I = 1 .O for 
primary cell and A$ = - 1 .O for secondary cell. Isotherms 

increment A0 = 0.05 starting at 0 = 0 from the right. 

11). The location of the maximum stream function is 
in phase with the hot wall boundary condition 
when the wall changes at a slow rate (Fig. 12) but 
lags by at least 90’ for the shorter time period case 
(Fig. 11). 

The degree of penetration of the time-dependent 
boundary condition into the enclosure strongly 
depends on the period of oscillation. Shorter periods 
show less penetration, and longer periods result in 
greater depth of penetration. This is the same trend 
that is found in pure conduction heat transfer with an 
oscillating boundary condition [I 31. This conclusion 
is drawn in this study by comparing the isotherms in 
Fig. 11 to the isotherms in Fig. 12 at equivalent times. 
A careful comparison of the isotherm patterns shows 
that the change occurring near the hot wall, with 
respect to time, is restricted to a thinner region for the 
simulation with the shorter time period. This fact is 

(b) 

(d) 

FIG. 12. Periodic streamlmes (left column) and isolherms 
(right column) for simulation 5. (a) z = 0.06, $,,,,, = 10. (b) 
T = 0.065, I/?,,, = 18. (c) T = 0.07, $,,, = 13. (d) T = 0.075, 
I/J,,,, = 10. Streamline increment A$ = 1.0 for primary cell 
and A$ = - 1 .O for secondary cell. Isotherms increment 

A0 = 0.05 starting at fI = 0 from the right. 

also evident in Figs. 13(a), (b), which shows the 
Nusselt number fluctuation diminishing more quickly 
with distance for short time periods (Fig. 13(a)) than 
for long time periods (Fig. 13(b)). 

Time-uverageqed heat tram@ 

The last issue to address is that of heat transfer 
enhancement caused by wall temperature oscillation. 
To answer this question, consider the time-averaged 
heat transfer 

The instantaneous Nusselt number, Nu, was defined 
earlier in equation (9) as the dimensionless heat trans- 
fer across a vertical cross-section at a particular 
instant. Integration over a complete cycle yields 
the time-averaged value. Once the solution becomes 
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FIG. 13. Nusselt number dependence on time. Hot wall, 
x = 0 (-) ; cold wall, x = L/H (- .-) ; midpoint, 

x = (L/2)/H (---). (a) Simulation 4. (b) Simulation 5. 

periodic, Nu becomes constant and independent of 
the location of X (i.e. Nu, = Nu,, = &J. Values of 
Nu are reported in Table 2 for all of the simulations 
along with the percentage increase (shown in 
parentheses) above the constant wall temperature 
solution. 

Results of our study (Table 2) show that the time- 
averaged heat transfer increases only marginally due 
to the hot wall temperature oscillation. Two trends 
are easily identified in Table 2. Increasing the ampli- 
tude (for fixed period) or increasing the period (for 
fixed amplitude) slightly increases the time-averaged 
heat transfer. Note also that higher amplitudes and 
longer periods mean more penetration of the tem- 
perature oscillation into the cavity. Since the tem- 
perature oscillation does not fully penetrate to the 
opposite cold vertical wall, it is not surprising that the 
increase in the time-averaged heat transfer through 
the enclosure is small. 

Table 2. Periodic time-averaged Nusselt number 

Simulation 
number a P NU 

1 0.4 0.01 5.41 (1.7%) 
2 0.2 0.01 5.35 (0.6%) 
3 0.8 0.01 5.58 (4.9%) 
4 0.4 0.005 5.36 (0.8%) 
5 0.4 0.02 5.43 (2.1%) 

CONCLUSIONS 

This study helped clarify the role and relative 
importance of time-dependent boundary conditions 
on thermally-driven convection in enclosures. More 
specifically, this paper numerically investigated natu- 
ral convection in a square enclosure with an oscil- 
latory hot wall temperature opposite a vertical 
constant cold wall. For the parametric domain inves- 
tigated, the following main conclusions were reached. 

(1) The solution became periodic after a small 
number of cycles. The number depended inversely on 
the period but was independent of the amplitude. 

(2) The periodic flow field in all cases consisted of 
a primary cell which fluctuated in intensity and in the 
location of lClrnax. A weak secondary cell periodically 
appeared in the upper left hand corner of the enclosure 
and back heat flow occurred over certain times over 
a large portion of the hot driving wall. The wall tem- 
perature oscillations penetrated only partially into the 
enclosure. The Nusselt number varied with the same 
period as the hot wall temperature. Its amplitude 
quickly decreased with distance into the enclosure and 
became nearly constant at the cold wall. 

(3) Increasing the amplitude or the period of the 
hot wall temperature oscillation increased the size and 
the intensity of the secondary region of recirculation 
and increased the distance the hot wall temperature 
variation was felt into the enclosure. Also, greater 
variation in timaX is associated with larger values of 
amplitude and longer periods. 

(4) Increasing the amplitude or decreasing the 
period of the hot wall temperature oscillation increased 
the extent and the duration of the back heat flow. 

(5) Despite the time-dependent boundary condition 
and the drastically changing flow and temperature 
fields, the average heat transfer across the enclosure 
per cycle was approximately equal to the value for the 
enclosure with a fixed (mean) hot wall temperature. 
Increasing the amplitude or the period of the hot wall 
temperature oscillation increased the cycle-averaged 
heat transfer only slightly. 
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ECOULEMENT DE CONVECTION NATURELLE DANS UNE CAVITE AVEC DES 
CONDITIONS AUX LIMITES PERIODIQUES DANS LE TEMPS 

Resummon Ctudie numkriquement le probltme de 1’0coulement laminaire de convection naturelle dans 
une cavitt‘ carrke ayant une paroi verticale chaude B temperature uniforme mais pkriodiquement variable 
dans le temps. Cette temptrature varie sinusoidalement autour d’une temphrature fix&e. La paroi opposee 
froide est maintenue I temp&rature constantc. Des solutions sont obtenues pour diff&rents cas qui illustrent 
les effets des oscillations de temp&rature de la surface sur l’bcoulement et le transfert thermique ;i travers 
la cavit& Les solutions obtenues sont pkriodiques dans le temps. Ces lignes de courant montrent qu’un 
petit &coulement secondaire apparait de faGon intermittente dans le coin supErieur pr& de la paroi chaude 
et qu’il tourne dans le sens oppos& B celui de l’tcoulement principal. Le flux thermique instanta& ti travers 
la surface fluctue fortement et pendant une certaine durbe, la chaleur enlevCe concerne un large segment 
de la surface chaude. L’effet du changement pCriodique de tempkrature pari&ale est partiellement sensible 
dans la cavitk et globalement le transfert moyenni dans le temps, i travers la cavitC, est pratiquement 

insensible & la condition thermique p~~odiquc. 

AUFTRIEBSSTROMUNG IN EINEM HOHLRAUM MIT ZEITLICH PERIODISCHEN 
RANDBEDINGUNGEN 

Zusamm~nf~ung-Do Problem der iaminaren Auftriebsstr~mung in einem q~ddratischen Hohiraum 
wird numerisch untersucht. Die Str~mung entsteht dadurch, daf3 eine senkrechte Wand eine gleichf6~ige, 
zeitlich periodisch schwankende Ober&hentemperatur besitzt. Die Temperaturschwankungen sind sinus- 
fljrmig, ihr Mittelwert konstant. Die gegeniiberliegende kalte Wand wird auf konstdnter Temperatur 
gehalten. Fiir eine Anzahl unterschiedlicher Falle werden Lijsungen ermittelt, die die Einfliisse der osz- 
illierenden Oberfl%chentemperatur auf die Fluidstriimung und den Wgrmeiibergang im Hohlraum 
aufzeigen. Die ermittelten transienten LSsungen sind alb zeitlich periodisch. Die Stromlinien zeigen eine 
schwache sekundgre Striimungszelle, die intermittierend auftritt und anschliefiend in der oberen Ecke des 
Hohlraums nahe der wHrmeren Wand verschwindet. Diese Zellen rotieren umgekehrt zur Hauptstr~mung. 
Der Momentanwert der W~~estromdichte durch die heifje Wand weist starke zeitliche Schw~~nkungen 
auf, wobei es in bestimmten Zeitintervallen zur Riickstriimung von Wirme in BroDen Teiien der heiRen 
Fliiche kommt. Der EinfluR der periodisch schwankenden Wandtemperatur ist nur teilweise im Hohlraum 
festzustellen. Im ganzen gesehen ist der zeitlich gemittelte WLrmetibergang im gesamten Hohlraum zicmlich 

unempfindlich gegeniiber der zeitabhtingigen Randbedingung. 

BbI3BAHHOE IIOfi%EMHOrit CHJIOZi TE9EHME B IIOJIOCTH C I-IEPMOAHYECKH 
H3MEHIIIOmHMMCII BO BPEMEHH I-I’AHZIYHMMH YCJIOBHRMH 

AimoTnqna--YucneHHo uccnenyeTcn sanasa 0 Bbl3BamioM nonxehlrrol cunoii nahiaHap”cM Te9enHn B 
KBaApaTHOii nOJIOCTA C HiWpeTOfi BepTHKZUIbHOfi CTeHKOti, Ha FIOBepXHOCTH ROTOPOii ~OLW+~BaeTCK 
0nsfHaKoBaK reMneparypa, nepuonHsecKH I3i+feHxmI4asic% BO npe~e~kl. 3Ta TeMnepaTypa H3MeHReTcs 
~~*y~O~~=b~~, Kone6nrcb OKOff ~~KC~pOBKHH~rO CpenXWO 3HaYeHHII. ~~T~BO~O~O~HaK HS%UjE- 

Tax cTeHxa no~ep~~naeTc~ rrpn nocro~H~oii TeMriepaType. IIonyteHM peuxemix nnx pnna cnyraen, 
annmcrpupyraullre anmnine KonefiaHuZi TeMnepaTypH noleepxHocTEI Ha Te’femie xcu.5~0~~~ yI Tennone- 
peHoc B nOJt0C~Ei.Bce nonygeHHb*e HecraunoHapHbie peureHIin nepeoneuecw 83Meiisn0Tcsi ~0 apeMean. 

.&WH&, TOKa CBElJVZTWW2TB,‘EOT 0 TOM, VT0 B BepXHW.8 )“Jly nO&OCTH y HtW~TOii CTeHKH nepElOiDf~eCKEf 
KosHMKaeT A 3a’reM twree3aeT areiira cna6oro BTO~HWO~O TeqeIiwx, BpaniaIoluaffcn B HanpaeneHsH, 

06PaTHOM OCHOBHOMy TCSQHWH). MIlIOBeHHbIfi TeIIJIOEle~HOC 'ie)Ye3 HaIJX?T)PJ CTeHKy CylrleCTBeHHO 

+y~~y&ipye't 80 spehieee R cnycrr HeKoTopoe B~MII II~OESCXO~T OTBOJI Tenna c 6onbuioro ysacTKa 

HZWpTOii ,,OBt?pXJWCTH. 3+$4ZKT nepHO~~~KOr0 U3MeHeHHII TeMne~Typbi CTtSKU Il&DTBJlSETC5I B 
IIOXOCTB XUWb 4XTIISO,B B IfenOM ~~HeHH~~ II0 BpeMeHH Tel-IJEOEepe%OC MaJfO 3aBHCRT OT HeCTa- 

WoHapHMx rpamiYH6Ix ycnosati. 


